1 /******************************************************************************* 2 * SAT4J: a SATisfiability library for Java Copyright (C) 2004-2008 Daniel Le Berre 3 * 4 * All rights reserved. This program and the accompanying materials 5 * are made available under the terms of the Eclipse Public License v1.0 6 * which accompanies this distribution, and is available at 7 * http://www.eclipse.org/legal/epl-v10.html 8 * 9 * Alternatively, the contents of this file may be used under the terms of 10 * either the GNU Lesser General Public License Version 2.1 or later (the 11 * "LGPL"), in which case the provisions of the LGPL are applicable instead 12 * of those above. If you wish to allow use of your version of this file only 13 * under the terms of the LGPL, and not to allow others to use your version of 14 * this file under the terms of the EPL, indicate your decision by deleting 15 * the provisions above and replace them with the notice and other provisions 16 * required by the LGPL. If you do not delete the provisions above, a recipient 17 * may use your version of this file under the terms of the EPL or the LGPL. 18 * 19 * Based on the original MiniSat specification from: 20 * 21 * An extensible SAT solver. Niklas Een and Niklas Sorensson. Proceedings of the 22 * Sixth International Conference on Theory and Applications of Satisfiability 23 * Testing, LNCS 2919, pp 502-518, 2003. 24 * 25 * See www.minisat.se for the original solver in C++. 26 * 27 *******************************************************************************/ 28 package org.sat4j.core; 29 30 /** 31 * Utility methods to avoid using bit manipulation inside code. One should use 32 * Java 1.5 import static feature to use it without class qualification inside 33 * the code. 34 * 35 * In the DIMACS format, the literals are represented by signed integers, 0 36 * denoting the end of the clause. In the solver, the literals are represented 37 * by positive integers, in order to use them as index in arrays for instance. 38 * 39 * <pre> 40 * int p : a literal (p>1) 41 * p ˆ 1 : the negation of the literal 42 * p >> 1 : the DIMACS number representing the variable. 43 * int v : a DIMACS variable (v>0) 44 * v << 1 : a positive literal for that variable in the solver. 45 * v << 1 ˆ 1 : a negative literal for that variable. 46 * </pre> 47 * 48 * @author leberre 49 * 50 */ 51 public final class LiteralsUtils { 52 53 private LiteralsUtils() { 54 // no instance supposed to be created. 55 } 56 57 /** 58 * Returns the variable associated to the literal 59 * @param p a literal in internal representation 60 * @return the Dimacs variable associated to that literal. 61 */ 62 public static int var(int p) { 63 assert p > 1; 64 return p >> 1; 65 } 66 67 /** 68 * Returns the opposite literal. 69 * 70 * @param p a literal in internal representation 71 * @return the opposite literal in internal representation 72 */ 73 public static int neg(int p) { 74 return p ^ 1; 75 } 76 77 /** 78 * Returns the positive literal associated with a variable. 79 * @param var a variable in Dimacs format 80 * @return the positive literal associated with this variable in internal representation 81 */ 82 public static int posLit(int var) { 83 return var << 1; 84 } 85 86 /** 87 * Returns the negative literal associated with a variable. 88 * @param var a variable in Dimacs format 89 * @return the negative literal associated with this variable in internal representation 90 */ 91 public static int negLit(int var) { 92 return (var << 1)^1; 93 } 94 95 /** 96 * decode the internal representation of a literal in internal representation 97 * into Dimacs format. 98 * 99 * @param p 100 * the literal in internal representation 101 * @return the literal in dimacs representation 102 */ 103 public static int toDimacs(int p) { 104 return ((p & 1) == 0 ? 1 : -1) * (p >> 1); 105 } 106 107 }