View Javadoc

1   /*******************************************************************************
2    * SAT4J: a SATisfiability library for Java Copyright (C) 2004-2008 Daniel Le Berre
3    *
4    * All rights reserved. This program and the accompanying materials
5    * are made available under the terms of the Eclipse Public License v1.0
6    * which accompanies this distribution, and is available at
7    * http://www.eclipse.org/legal/epl-v10.html
8    *
9    * Alternatively, the contents of this file may be used under the terms of
10   * either the GNU Lesser General Public License Version 2.1 or later (the
11   * "LGPL"), in which case the provisions of the LGPL are applicable instead
12   * of those above. If you wish to allow use of your version of this file only
13   * under the terms of the LGPL, and not to allow others to use your version of
14   * this file under the terms of the EPL, indicate your decision by deleting
15   * the provisions above and replace them with the notice and other provisions
16   * required by the LGPL. If you do not delete the provisions above, a recipient
17   * may use your version of this file under the terms of the EPL or the LGPL.
18   * 
19   * Based on the original MiniSat specification from:
20   * 
21   * An extensible SAT solver. Niklas Een and Niklas Sorensson. Proceedings of the
22   * Sixth International Conference on Theory and Applications of Satisfiability
23   * Testing, LNCS 2919, pp 502-518, 2003.
24   *
25   * See www.minisat.se for the original solver in C++.
26   * 
27   *******************************************************************************/
28  package org.sat4j.core;
29  
30  /**
31   * Utility methods to avoid using bit manipulation inside code. One should use
32   * Java 1.5 import static feature to use it without class qualification inside
33   * the code.
34   * 
35   * In the DIMACS format, the literals are represented by signed integers, 0
36   * denoting the end of the clause. In the solver, the literals are represented
37   * by positive integers, in order to use them as index in arrays for instance.
38   * 
39   * <pre>
40   *  int p : a literal (p&gt;1)
41   *  p &circ; 1 : the negation of the literal
42   *  p &gt;&gt; 1 : the DIMACS number representing the variable.
43   *  int v : a DIMACS variable (v&gt;0)
44   *  v &lt;&lt; 1 : a positive literal for that variable in the solver.
45   *  v &lt;&lt; 1 &circ; 1 : a negative literal for that variable.
46   * </pre>
47   * 
48   * @author leberre
49   * 
50   */
51  public final class LiteralsUtils {
52  
53  	private LiteralsUtils() {
54  		// no instance supposed to be created.
55  	}
56  
57  	/**
58  	 * Returns the variable associated to the literal
59  	 * 
60  	 * @param p
61  	 *            a literal in internal representation
62  	 * @return the Dimacs variable associated to that literal.
63  	 */
64  	public static int var(int p) {
65  		assert p > 1;
66  		return p >> 1;
67  	}
68  
69  	/**
70  	 * Returns the opposite literal.
71  	 * 
72  	 * @param p
73  	 *            a literal in internal representation
74  	 * @return the opposite literal in internal representation
75  	 */
76  	public static int neg(int p) {
77  		return p ^ 1;
78  	}
79  
80  	/**
81  	 * Returns the positive literal associated with a variable.
82  	 * 
83  	 * @param var
84  	 *            a variable in Dimacs format
85  	 * @return the positive literal associated with this variable in internal
86  	 *         representation
87  	 */
88  	public static int posLit(int var) {
89  		return var << 1;
90  	}
91  
92  	/**
93  	 * Returns the negative literal associated with a variable.
94  	 * 
95  	 * @param var
96  	 *            a variable in Dimacs format
97  	 * @return the negative literal associated with this variable in internal
98  	 *         representation
99  	 */
100 	public static int negLit(int var) {
101 		return (var << 1) ^ 1;
102 	}
103 
104 	/**
105 	 * decode the internal representation of a literal in internal
106 	 * representation into Dimacs format.
107 	 * 
108 	 * @param p
109 	 *            the literal in internal representation
110 	 * @return the literal in dimacs representation
111 	 */
112 	public static int toDimacs(int p) {
113 		return ((p & 1) == 0 ? 1 : -1) * (p >> 1);
114 	}
115 
116 	/**
117 	 * encode the classical Dimacs representation (negated integers for negated
118 	 * literals) into the internal format.
119 	 * 
120 	 * @param x
121 	 *            the literal in Dimacs format
122 	 * @return the literal in internal format.
123 	 * @since 2.2
124 	 */
125 	public static int toInternal(int x) {
126 		return ((x < 0) ? ((-x) << 1) ^ 1 : (x << 1));
127 	}
128 }