1 /******************************************************************************* 2 * SAT4J: a SATisfiability library for Java Copyright (C) 2004-2008 Daniel Le Berre 3 * 4 * All rights reserved. This program and the accompanying materials 5 * are made available under the terms of the Eclipse Public License v1.0 6 * which accompanies this distribution, and is available at 7 * http://www.eclipse.org/legal/epl-v10.html 8 * 9 * Alternatively, the contents of this file may be used under the terms of 10 * either the GNU Lesser General Public License Version 2.1 or later (the 11 * "LGPL"), in which case the provisions of the LGPL are applicable instead 12 * of those above. If you wish to allow use of your version of this file only 13 * under the terms of the LGPL, and not to allow others to use your version of 14 * this file under the terms of the EPL, indicate your decision by deleting 15 * the provisions above and replace them with the notice and other provisions 16 * required by the LGPL. If you do not delete the provisions above, a recipient 17 * may use your version of this file under the terms of the EPL or the LGPL. 18 * 19 * Based on the original MiniSat specification from: 20 * 21 * An extensible SAT solver. Niklas Een and Niklas Sorensson. Proceedings of the 22 * Sixth International Conference on Theory and Applications of Satisfiability 23 * Testing, LNCS 2919, pp 502-518, 2003. 24 * 25 * See www.minisat.se for the original solver in C++. 26 * 27 *******************************************************************************/ 28 29 package org.sat4j.tools.encoding; 30 31 import org.sat4j.core.ConstrGroup; 32 import org.sat4j.core.VecInt; 33 import org.sat4j.specs.ContradictionException; 34 import org.sat4j.specs.IConstr; 35 import org.sat4j.specs.ISolver; 36 import org.sat4j.specs.IVecInt; 37 38 /** 39 * 40 * For the case "at most one", we can use the binary encoding (also called 41 * birwise encoding) first described in A. M. Frisch, T. J. Peugniez, A. J. 42 * Dogget and P. Nightingale, "Solving Non-Boolean Satisfiability Problems With 43 * Stochastic Local Search: A Comparison of Encodings" in Journal of Automated 44 * Reasoning, vol. 35, n� 1-3, 2005 45 * 46 * @author sroussel 47 * @since 2.3.1 48 */ 49 public class Binary extends EncodingStrategyAdapter { 50 51 /** 52 * p being the smaller integer greater than log_2(n), this encoding adds p 53 * variables and n*p clauses. 54 * 55 */ 56 @Override 57 public IConstr addAtMostOne(ISolver solver, IVecInt literals) 58 throws ContradictionException { 59 ConstrGroup group = new ConstrGroup(false); 60 61 final int n = literals.size(); 62 final int p = (int) Math.ceil(Math.log(n) / Math.log(2)); 63 final int k = (int) Math.pow(2, p) - n; 64 65 int y[] = new int[p]; 66 for (int i = 0; i < p; i++) { 67 y[i] = solver.nextFreeVarId(true); 68 } 69 70 IVecInt clause = new VecInt(); 71 String binary = ""; 72 73 for (int i = 0; i < k; i++) { 74 binary = Integer.toBinaryString(i); 75 while (binary.length() != p - 1) { 76 binary = "0" + binary; 77 } 78 79 for (int j = 0; j < p - 1; j++) { 80 clause.push(-literals.get(i)); 81 if (binary.charAt(j) == '0') { 82 clause.push(-y[j]); 83 } else { 84 clause.push(y[j]); 85 } 86 group.add(solver.addClause(clause)); 87 clause.clear(); 88 89 } 90 } 91 92 for (int i = k; i < n; i++) { 93 binary = Integer.toBinaryString(2 * k + i - k); 94 while (binary.length() != p) { 95 binary = "0" + binary; 96 } 97 for (int j = 0; j < p; j++) { 98 clause.push(-literals.get(i)); 99 if (binary.charAt(j) == '0') { 100 clause.push(-y[j]); 101 } else { 102 clause.push(y[j]); 103 } 104 group.add(solver.addClause(clause)); 105 clause.clear(); 106 } 107 108 } 109 110 return group; 111 } 112 113 @Override 114 public IConstr addAtMost(ISolver solver, IVecInt literals, int degree) 115 throws ContradictionException { 116 // TODO Implement binary at most k method 117 return super.addAtMost(solver, literals, degree); 118 } 119 }