View Javadoc

1   /*******************************************************************************
2    * SAT4J: a SATisfiability library for Java Copyright (C) 2004, 2012 Artois University and CNRS
3    *
4    * All rights reserved. This program and the accompanying materials
5    * are made available under the terms of the Eclipse Public License v1.0
6    * which accompanies this distribution, and is available at
7    *  http://www.eclipse.org/legal/epl-v10.html
8    *
9    * Alternatively, the contents of this file may be used under the terms of
10   * either the GNU Lesser General Public License Version 2.1 or later (the
11   * "LGPL"), in which case the provisions of the LGPL are applicable instead
12   * of those above. If you wish to allow use of your version of this file only
13   * under the terms of the LGPL, and not to allow others to use your version of
14   * this file under the terms of the EPL, indicate your decision by deleting
15   * the provisions above and replace them with the notice and other provisions
16   * required by the LGPL. If you do not delete the provisions above, a recipient
17   * may use your version of this file under the terms of the EPL or the LGPL.
18   *
19   * Based on the original MiniSat specification from:
20   *
21   * An extensible SAT solver. Niklas Een and Niklas Sorensson. Proceedings of the
22   * Sixth International Conference on Theory and Applications of Satisfiability
23   * Testing, LNCS 2919, pp 502-518, 2003.
24   *
25   * See www.minisat.se for the original solver in C++.
26   *
27   * Contributors:
28   *   CRIL - initial API and implementation
29   *******************************************************************************/
30  
31  package org.sat4j.tools.encoding;
32  
33  import org.sat4j.core.ConstrGroup;
34  import org.sat4j.core.VecInt;
35  import org.sat4j.specs.ContradictionException;
36  import org.sat4j.specs.IConstr;
37  import org.sat4j.specs.ISolver;
38  import org.sat4j.specs.IVecInt;
39  
40  /**
41   * 
42   * Ladder encoding for the "at most one" and "exactly one" cases.
43   * 
44   * The ladder encoding described in: I. P. Gent and P. Nightingale,
45   * "A new encoding for AllDifferent into SAT", in International Workshop on
46   * Modeling and Reformulating Constraint Satisfaction Problems, 2004
47   * 
48   * @author sroussel
49   * @since 2.3.1
50   */
51  public class Ladder extends EncodingStrategyAdapter {
52  
53      @Override
54      /**
55       * If n is the number of variables in the constraint, 
56       * this encoding adds n variables and 4n clauses 
57       * (3n+1 size 2 clauses and n-1 size 3 clauses)
58       */
59      public IConstr addAtMostOne(ISolver solver, IVecInt literals)
60              throws ContradictionException {
61          ConstrGroup group = new ConstrGroup(false);
62          final int n = literals.size() + 1;
63  
64          int xN = solver.nextFreeVarId(true);
65          int y[] = new int[n - 1];
66  
67          for (int i = 0; i < n - 1; i++) {
68              y[i] = solver.nextFreeVarId(true);
69          }
70  
71          IVecInt clause = new VecInt();
72  
73          // Constraint \bigwedge_{i=1}{n-2} (\neg y_{i+1} \vee y_i)
74          for (int i = 1; i <= n - 2; i++) {
75              clause.push(-y[i]);
76              clause.push(y[i - 1]);
77              group.add(solver.addClause(clause));
78              clause.clear();
79          }
80  
81          // Constraint \bigwedge_{i=2}{n-1} (\neg y_{i-1} \vee y_i \vee x_i)
82          for (int i = 2; i <= n - 1; i++) {
83              clause.push(-y[i - 2]);
84              clause.push(y[i - 1]);
85              clause.push(literals.get(i - 1));
86              group.add(solver.addClause(clause));
87              clause.clear();
88          }
89  
90          // Constraint \bigwedge_{i=2}{n-1} (\neg x_i \vee y_{i-1)})
91          for (int i = 2; i <= n - 1; i++) {
92              clause.push(-literals.get(i - 1));
93              clause.push(y[i - 2]);
94              group.add(solver.addClause(clause));
95              clause.clear();
96          }
97  
98          // Constraint \bigwedge_{i=2}{n-1} (\neg x_i \vee \neg y_i)
99          for (int i = 2; i <= n - 1; i++) {
100             clause.push(-literals.get(i - 1));
101             clause.push(-y[i - 1]);
102             group.add(solver.addClause(clause));
103             clause.clear();
104         }
105 
106         // Constraint y_1 \vee x_1
107         clause.push(y[0]);
108         clause.push(literals.get(0));
109         group.add(solver.addClause(clause));
110         clause.clear();
111 
112         // Constraint \neg y_1 \vee \neg x_1
113         clause.push(-y[0]);
114         clause.push(-literals.get(0));
115         group.add(solver.addClause(clause));
116         clause.clear();
117 
118         // Constraint \neg y_{n-1} \vee x_n
119         clause.push(-y[n - 2]);
120         clause.push(xN);
121         group.add(solver.addClause(clause));
122         clause.clear();
123 
124         // Constraint y_{n-1} \vee \neg x_n
125         clause.push(y[n - 2]);
126         clause.push(-xN);
127         group.add(solver.addClause(clause));
128         clause.clear();
129 
130         return group;
131     }
132 
133     @Override
134     /**
135      * If n is the number of variables in the constraint, 
136      * this encoding adds n-1 variables and 4(n-1) clauses 
137      * (3n-2 size 2 clauses and n-2 size 3 clauses)
138      */
139     public IConstr addExactlyOne(ISolver solver, IVecInt literals)
140             throws ContradictionException {
141         ConstrGroup group = new ConstrGroup(false);
142         final int n = literals.size();
143 
144         int y[] = new int[n - 1];
145 
146         for (int i = 0; i < n - 1; i++) {
147             y[i] = solver.nextFreeVarId(true);
148         }
149 
150         IVecInt clause = new VecInt();
151 
152         // Constraint \bigwedge_{i=1}{n-2} (\neg y_{i+1} \vee y_i)
153         for (int i = 1; i <= n - 2; i++) {
154             clause.push(-y[i]);
155             clause.push(y[i - 1]);
156             group.add(solver.addClause(clause));
157             clause.clear();
158         }
159 
160         // Constraint \bigwedge_{i=2}{n-1} (\neg y_{i-1} \vee y_i \vee x_i)
161         for (int i = 2; i <= n - 1; i++) {
162             clause.push(-y[i - 2]);
163             clause.push(y[i - 1]);
164             clause.push(literals.get(i - 1));
165             group.add(solver.addClause(clause));
166             clause.clear();
167         }
168 
169         // Constraint \bigwedge_{i=2}{n-1} (\neg x_i \vee y_{i-1)})
170         for (int i = 2; i <= n - 1; i++) {
171             clause.push(-literals.get(i - 1));
172             clause.push(y[i - 2]);
173             group.add(solver.addClause(clause));
174             clause.clear();
175         }
176 
177         // Constraint \bigwedge_{i=2}{n-1} (\neg x_i \vee \neg y_i)
178         for (int i = 2; i <= n - 1; i++) {
179             clause.push(-literals.get(i - 1));
180             clause.push(-y[i - 1]);
181             group.add(solver.addClause(clause));
182             clause.clear();
183         }
184 
185         // Constraint y_1 \vee x_1
186         clause.push(y[0]);
187         clause.push(literals.get(0));
188         group.add(solver.addClause(clause));
189         clause.clear();
190 
191         // Constraint \neg y_1 \vee \neg x_1
192         clause.push(-y[0]);
193         clause.push(-literals.get(0));
194         group.add(solver.addClause(clause));
195         clause.clear();
196 
197         // Constraint \neg y_{n-1} \vee x_n
198         clause.push(-y[n - 2]);
199         clause.push(literals.get(n - 1));
200         group.add(solver.addClause(clause));
201         clause.clear();
202 
203         // Constraint y_{n-1} \vee \neg x_n
204         clause.push(y[n - 2]);
205         clause.push(-literals.get(n - 1));
206         group.add(solver.addClause(clause));
207         clause.clear();
208 
209         return group;
210     }
211 }