1 /******************************************************************************* 2 * SAT4J: a SATisfiability library for Java Copyright (C) 2004, 2012 Artois University and CNRS 3 * 4 * All rights reserved. This program and the accompanying materials 5 * are made available under the terms of the Eclipse Public License v1.0 6 * which accompanies this distribution, and is available at 7 * http://www.eclipse.org/legal/epl-v10.html 8 * 9 * Alternatively, the contents of this file may be used under the terms of 10 * either the GNU Lesser General Public License Version 2.1 or later (the 11 * "LGPL"), in which case the provisions of the LGPL are applicable instead 12 * of those above. If you wish to allow use of your version of this file only 13 * under the terms of the LGPL, and not to allow others to use your version of 14 * this file under the terms of the EPL, indicate your decision by deleting 15 * the provisions above and replace them with the notice and other provisions 16 * required by the LGPL. If you do not delete the provisions above, a recipient 17 * may use your version of this file under the terms of the EPL or the LGPL. 18 * 19 * Based on the original MiniSat specification from: 20 * 21 * An extensible SAT solver. Niklas Een and Niklas Sorensson. Proceedings of the 22 * Sixth International Conference on Theory and Applications of Satisfiability 23 * Testing, LNCS 2919, pp 502-518, 2003. 24 * 25 * See www.minisat.se for the original solver in C++. 26 * 27 * Contributors: 28 * CRIL - initial API and implementation 29 *******************************************************************************/ 30 package org.sat4j.tools; 31 32 import org.sat4j.core.VecInt; 33 import org.sat4j.specs.ISolver; 34 import org.sat4j.specs.IVecInt; 35 import org.sat4j.specs.TimeoutException; 36 37 /** 38 * The aim of this class is to compute efficiently the literals implied by the 39 * set of constraints (also called backbone or unit implicates). 40 * 41 * The work has been done in the context of ANR BR4CP. 42 * 43 * @author leberre 44 * 45 */ 46 public class Backbone { 47 48 private Backbone() { 49 50 } 51 52 /** 53 * Computes the backbone of a formula following the algorithm described in 54 * João Marques-Silva, Mikolás Janota, Inês Lynce: On Computing Backbones of 55 * Propositional Theories. ECAI 2010: 15-20 56 * 57 * We use Sat4j's ability to compute prime implicants instead of models to 58 * simplify the model at each step. 59 * 60 * @param solver 61 * @return 62 * @throws TimeoutException 63 */ 64 public static IVecInt compute(ISolver solver) throws TimeoutException { 65 return compute(solver, VecInt.EMPTY); 66 } 67 68 /** 69 * Computes the backbone of a formula following the algorithm described in 70 * João Marques-Silva, Mikolás Janota, Inês Lynce: On Computing Backbones of 71 * Propositional Theories. ECAI 2010: 15-20 72 * 73 * We use Sat4j's ability to compute prime implicants instead of models to 74 * simplify the model at each step. 75 * 76 * @param solver 77 * @param assumptions 78 * @return 79 * @throws TimeoutException 80 */ 81 public static IVecInt compute(ISolver solver, IVecInt assumptions) 82 throws TimeoutException { 83 boolean result = solver.isSatisfiable(assumptions); 84 if (!result) { 85 return VecInt.EMPTY; 86 } 87 return compute(solver, solver.primeImplicant(), assumptions); 88 89 } 90 91 public static IVecInt compute(ISolver solver, int[] implicant) 92 throws TimeoutException { 93 return compute(solver, implicant, VecInt.EMPTY); 94 } 95 96 public static IVecInt compute(ISolver solver, int[] implicant, 97 IVecInt assumptions) throws TimeoutException { 98 IVecInt litsToTest = new VecInt(); 99 for (int p : implicant) { 100 if (!assumptions.contains(p)) { 101 litsToTest.push(-p); 102 } 103 } 104 IVecInt candidates = new VecInt(); 105 assumptions.copyTo(candidates); 106 int p; 107 while (!litsToTest.isEmpty()) { 108 p = litsToTest.last(); 109 candidates.push(p); 110 litsToTest.pop(); 111 if (solver.isSatisfiable(candidates)) { 112 candidates.pop(); 113 implicant = solver.primeImplicant(); 114 removeVarNotPresentAndSatisfiedLits(implicant, litsToTest, 115 solver.nVars()); 116 } else { 117 candidates.pop().push(-p); 118 } 119 } 120 return candidates; 121 } 122 123 private static void removeVarNotPresentAndSatisfiedLits(int[] implicant, 124 IVecInt litsToTest, int n) { 125 int[] marks = new int[n + 1]; 126 for (int p : implicant) { 127 marks[p > 0 ? p : -p] = p; 128 } 129 int q, mark; 130 for (int i = 0; i < litsToTest.size();) { 131 q = litsToTest.get(i); 132 mark = marks[q > 0 ? q : -q]; 133 if (mark == 0 || mark == q) { 134 litsToTest.delete(i); 135 } else { 136 i++; 137 } 138 } 139 } 140 }