1 /******************************************************************************* 2 * SAT4J: a SATisfiability library for Java Copyright (C) 2004, 2012 Artois University and CNRS 3 * 4 * All rights reserved. This program and the accompanying materials 5 * are made available under the terms of the Eclipse Public License v1.0 6 * which accompanies this distribution, and is available at 7 * http://www.eclipse.org/legal/epl-v10.html 8 * 9 * Alternatively, the contents of this file may be used under the terms of 10 * either the GNU Lesser General Public License Version 2.1 or later (the 11 * "LGPL"), in which case the provisions of the LGPL are applicable instead 12 * of those above. If you wish to allow use of your version of this file only 13 * under the terms of the LGPL, and not to allow others to use your version of 14 * this file under the terms of the EPL, indicate your decision by deleting 15 * the provisions above and replace them with the notice and other provisions 16 * required by the LGPL. If you do not delete the provisions above, a recipient 17 * may use your version of this file under the terms of the EPL or the LGPL. 18 * 19 * Based on the original MiniSat specification from: 20 * 21 * An extensible SAT solver. Niklas Een and Niklas Sorensson. Proceedings of the 22 * Sixth International Conference on Theory and Applications of Satisfiability 23 * Testing, LNCS 2919, pp 502-518, 2003. 24 * 25 * See www.minisat.se for the original solver in C++. 26 * 27 * Contributors: 28 * CRIL - initial API and implementation 29 *******************************************************************************/ 30 31 package org.sat4j.tools.encoding; 32 33 import org.sat4j.core.ConstrGroup; 34 import org.sat4j.core.VecInt; 35 import org.sat4j.specs.ContradictionException; 36 import org.sat4j.specs.IConstr; 37 import org.sat4j.specs.ISolver; 38 import org.sat4j.specs.IVecInt; 39 40 /** 41 * Binomial encoding for the "at most one" and "at most k" cases. 42 * 43 * For the "at most one" case, this encoding is equivalent to the one referred 44 * to in the literature as the pair-wise or naive encoding. For the "at most k" 45 * case, the previous encoding is generalized with binomial selection (see A. M. 46 * Frisch and P. A. Giannaros, "SAT Encodings of the At-Most-k Constraint", in 47 * International Workshop on Modelling and Reformulating Constraint Satisfaction 48 * Problems, 2010 for details). 49 * 50 * @author stephanieroussel 51 * @since 2.3.1 52 */ 53 public class Binomial extends EncodingStrategyAdapter { 54 55 /** 56 * 57 */ 58 private static final long serialVersionUID = 1L; 59 60 @Override 61 public IConstr addAtMost(ISolver solver, IVecInt literals, int degree) 62 throws ContradictionException { 63 ConstrGroup group = new ConstrGroup(); 64 65 IVecInt clause = new VecInt(); 66 67 if (degree == 1) { 68 return addAtMostOne(solver, literals); 69 } 70 71 for (IVecInt vec : literals.subset(degree + 1)) { 72 for (int i = 0; i < vec.size(); i++) { 73 clause.push(-vec.get(i)); 74 } 75 group.add(solver.addClause(clause)); 76 clause.clear(); 77 } 78 return group; 79 80 } 81 82 @Override 83 public IConstr addAtMostOne(ISolver solver, IVecInt literals) 84 throws ContradictionException { 85 ConstrGroup group = new ConstrGroup(); 86 87 IVecInt clause = new VecInt(); 88 89 for (int i = 0; i < literals.size() - 1; i++) { 90 for (int j = i + 1; j < literals.size(); j++) { 91 clause.push(-literals.get(i)); 92 clause.push(-literals.get(j)); 93 group.add(solver.addClause(clause)); 94 clause.clear(); 95 } 96 } 97 return group; 98 } 99 100 @Override 101 public IConstr addExactlyOne(ISolver solver, IVecInt literals) 102 throws ContradictionException { 103 ConstrGroup group = new ConstrGroup(); 104 105 group.add(addAtLeastOne(solver, literals)); 106 group.add(addAtMostOne(solver, literals)); 107 108 return group; 109 } 110 111 @Override 112 public IConstr addExactly(ISolver solver, IVecInt literals, int degree) 113 throws ContradictionException { 114 ConstrGroup group = new ConstrGroup(); 115 116 group.add(addAtLeast(solver, literals, degree)); 117 group.add(addAtMost(solver, literals, degree)); 118 119 return group; 120 } 121 122 }