View Javadoc

1   /*******************************************************************************
2    * SAT4J: a SATisfiability library for Java Copyright (C) 2004, 2012 Artois University and CNRS
3    *
4    * All rights reserved. This program and the accompanying materials
5    * are made available under the terms of the Eclipse Public License v1.0
6    * which accompanies this distribution, and is available at
7    *  http://www.eclipse.org/legal/epl-v10.html
8    *
9    * Alternatively, the contents of this file may be used under the terms of
10   * either the GNU Lesser General Public License Version 2.1 or later (the
11   * "LGPL"), in which case the provisions of the LGPL are applicable instead
12   * of those above. If you wish to allow use of your version of this file only
13   * under the terms of the LGPL, and not to allow others to use your version of
14   * this file under the terms of the EPL, indicate your decision by deleting
15   * the provisions above and replace them with the notice and other provisions
16   * required by the LGPL. If you do not delete the provisions above, a recipient
17   * may use your version of this file under the terms of the EPL or the LGPL.
18   *
19   * Based on the original MiniSat specification from:
20   *
21   * An extensible SAT solver. Niklas Een and Niklas Sorensson. Proceedings of the
22   * Sixth International Conference on Theory and Applications of Satisfiability
23   * Testing, LNCS 2919, pp 502-518, 2003.
24   *
25   * See www.minisat.se for the original solver in C++.
26   *
27   * Contributors:
28   *   CRIL - initial API and implementation
29   *******************************************************************************/
30  
31  package org.sat4j.tools.encoding;
32  
33  import org.sat4j.core.ConstrGroup;
34  import org.sat4j.core.VecInt;
35  import org.sat4j.specs.ContradictionException;
36  import org.sat4j.specs.IConstr;
37  import org.sat4j.specs.ISolver;
38  import org.sat4j.specs.IVecInt;
39  
40  /**
41   * 
42   * Ladder encoding for the "at most one" and "exactly one" cases.
43   * 
44   * The ladder encoding described in: I. P. Gent and P. Nightingale,
45   * "A new encoding for AllDifferent into SAT", in International Workshop on
46   * Modeling and Reformulating Constraint Satisfaction Problems, 2004
47   * 
48   * @author sroussel
49   * @since 2.3.1
50   */
51  public class Ladder extends EncodingStrategyAdapter {
52  
53      /**
54       * 
55       */
56      private static final long serialVersionUID = 1L;
57  
58      @Override
59      /**
60       * If n is the number of variables in the constraint, 
61       * this encoding adds n variables and 4n clauses 
62       * (3n+1 size 2 clauses and n-1 size 3 clauses)
63       */
64      public IConstr addAtMostOne(ISolver solver, IVecInt literals)
65              throws ContradictionException {
66          ConstrGroup group = new ConstrGroup(false);
67          final int n = literals.size() + 1;
68  
69          int xN = solver.nextFreeVarId(true);
70          int y[] = new int[n - 1];
71  
72          for (int i = 0; i < n - 1; i++) {
73              y[i] = solver.nextFreeVarId(true);
74          }
75  
76          IVecInt clause = new VecInt();
77  
78          // Constraint \bigwedge_{i=1}{n-2} (\neg y_{i+1} \vee y_i)
79          for (int i = 1; i <= n - 2; i++) {
80              clause.push(-y[i]);
81              clause.push(y[i - 1]);
82              group.add(solver.addClause(clause));
83              clause.clear();
84          }
85  
86          // Constraint \bigwedge_{i=2}{n-1} (\neg y_{i-1} \vee y_i \vee x_i)
87          for (int i = 2; i <= n - 1; i++) {
88              clause.push(-y[i - 2]);
89              clause.push(y[i - 1]);
90              clause.push(literals.get(i - 1));
91              group.add(solver.addClause(clause));
92              clause.clear();
93          }
94  
95          // Constraint \bigwedge_{i=2}{n-1} (\neg x_i \vee y_{i-1)})
96          for (int i = 2; i <= n - 1; i++) {
97              clause.push(-literals.get(i - 1));
98              clause.push(y[i - 2]);
99              group.add(solver.addClause(clause));
100             clause.clear();
101         }
102 
103         // Constraint \bigwedge_{i=2}{n-1} (\neg x_i \vee \neg y_i)
104         for (int i = 2; i <= n - 1; i++) {
105             clause.push(-literals.get(i - 1));
106             clause.push(-y[i - 1]);
107             group.add(solver.addClause(clause));
108             clause.clear();
109         }
110 
111         // Constraint y_1 \vee x_1
112         clause.push(y[0]);
113         clause.push(literals.get(0));
114         group.add(solver.addClause(clause));
115         clause.clear();
116 
117         // Constraint \neg y_1 \vee \neg x_1
118         clause.push(-y[0]);
119         clause.push(-literals.get(0));
120         group.add(solver.addClause(clause));
121         clause.clear();
122 
123         // Constraint \neg y_{n-1} \vee x_n
124         clause.push(-y[n - 2]);
125         clause.push(xN);
126         group.add(solver.addClause(clause));
127         clause.clear();
128 
129         // Constraint y_{n-1} \vee \neg x_n
130         clause.push(y[n - 2]);
131         clause.push(-xN);
132         group.add(solver.addClause(clause));
133         clause.clear();
134 
135         return group;
136     }
137 
138     @Override
139     /**
140      * If n is the number of variables in the constraint, 
141      * this encoding adds n-1 variables and 4(n-1) clauses 
142      * (3n-2 size 2 clauses and n-2 size 3 clauses)
143      */
144     public IConstr addExactlyOne(ISolver solver, IVecInt literals)
145             throws ContradictionException {
146         ConstrGroup group = new ConstrGroup(false);
147         final int n = literals.size();
148 
149         IVecInt clause = new VecInt();
150 
151         if (n == 1) {
152             clause.push(literals.get(0));
153             group.add(solver.addClause(clause));
154             return group;
155         }
156 
157         int y[] = new int[n - 1];
158 
159         for (int i = 0; i < n - 1; i++) {
160             y[i] = solver.nextFreeVarId(true);
161         }
162 
163         // Constraint \bigwedge_{i=1}{n-2} (\neg y_{i+1} \vee y_i)
164         for (int i = 1; i <= n - 2; i++) {
165             clause.push(-y[i]);
166             clause.push(y[i - 1]);
167             group.add(solver.addClause(clause));
168             clause.clear();
169         }
170 
171         // Constraint \bigwedge_{i=2}{n-1} (\neg y_{i-1} \vee y_i \vee x_i)
172         for (int i = 2; i <= n - 1; i++) {
173             clause.push(-y[i - 2]);
174             clause.push(y[i - 1]);
175             clause.push(literals.get(i - 1));
176             group.add(solver.addClause(clause));
177             clause.clear();
178         }
179 
180         // Constraint \bigwedge_{i=2}{n-1} (\neg x_i \vee y_{i-1)})
181         for (int i = 2; i <= n - 1; i++) {
182             clause.push(-literals.get(i - 1));
183             clause.push(y[i - 2]);
184             group.add(solver.addClause(clause));
185             clause.clear();
186         }
187 
188         // Constraint \bigwedge_{i=2}{n-1} (\neg x_i \vee \neg y_i)
189         for (int i = 2; i <= n - 1; i++) {
190             clause.push(-literals.get(i - 1));
191             clause.push(-y[i - 1]);
192             group.add(solver.addClause(clause));
193             clause.clear();
194         }
195 
196         // Constraint y_1 \vee x_1
197         clause.push(y[0]);
198         clause.push(literals.get(0));
199         group.add(solver.addClause(clause));
200         clause.clear();
201 
202         // Constraint \neg y_1 \vee \neg x_1
203         clause.push(-y[0]);
204         clause.push(-literals.get(0));
205         group.add(solver.addClause(clause));
206         clause.clear();
207 
208         // Constraint \neg y_{n-1} \vee x_n
209         clause.push(-y[n - 2]);
210         clause.push(literals.get(n - 1));
211         group.add(solver.addClause(clause));
212         clause.clear();
213 
214         // Constraint y_{n-1} \vee \neg x_n
215         clause.push(y[n - 2]);
216         clause.push(-literals.get(n - 1));
217         group.add(solver.addClause(clause));
218         clause.clear();
219 
220         return group;
221     }
222 }