View Javadoc

1   /*******************************************************************************
2    * SAT4J: a SATisfiability library for Java Copyright (C) 2004, 2012 Artois University and CNRS
3    *
4    * All rights reserved. This program and the accompanying materials
5    * are made available under the terms of the Eclipse Public License v1.0
6    * which accompanies this distribution, and is available at
7    *  http://www.eclipse.org/legal/epl-v10.html
8    *
9    * Alternatively, the contents of this file may be used under the terms of
10   * either the GNU Lesser General Public License Version 2.1 or later (the
11   * "LGPL"), in which case the provisions of the LGPL are applicable instead
12   * of those above. If you wish to allow use of your version of this file only
13   * under the terms of the LGPL, and not to allow others to use your version of
14   * this file under the terms of the EPL, indicate your decision by deleting
15   * the provisions above and replace them with the notice and other provisions
16   * required by the LGPL. If you do not delete the provisions above, a recipient
17   * may use your version of this file under the terms of the EPL or the LGPL.
18   *
19   * Based on the original MiniSat specification from:
20   *
21   * An extensible SAT solver. Niklas Een and Niklas Sorensson. Proceedings of the
22   * Sixth International Conference on Theory and Applications of Satisfiability
23   * Testing, LNCS 2919, pp 502-518, 2003.
24   *
25   * See www.minisat.se for the original solver in C++.
26   *
27   * Contributors:
28   *   CRIL - initial API and implementation
29   *******************************************************************************/
30  
31  package org.sat4j.tools.encoding;
32  
33  import org.sat4j.core.ConstrGroup;
34  import org.sat4j.core.VecInt;
35  import org.sat4j.specs.ContradictionException;
36  import org.sat4j.specs.IConstr;
37  import org.sat4j.specs.ISolver;
38  import org.sat4j.specs.IVecInt;
39  
40  /**
41   * Implementation of the sequential encoding for the at most k constraint.
42   * 
43   * For the cases "at most k", we can use the sequential encoding described in:
44   * C. Sinz,
45   * "Towards an Optimal CNF Encoding of Boolean Cardinality Constraints", in
46   * International Conference on Principles and Practices of Constraint
47   * Programming , 2005
48   * 
49   * @author sroussel
50   * @since 2.3.1
51   * 
52   */
53  public class Sequential extends EncodingStrategyAdapter {
54  
55      /**
56       * 
57       */
58      private static final long serialVersionUID = 1L;
59  
60      /**
61       * This encoding adds (n-1)*k variables (n is the number of variables in the
62       * at most constraint and k is the degree of the constraint) and 2nk+n-3k-1
63       * clauses.
64       */
65      @Override
66      public IConstr addAtMost(ISolver solver, IVecInt literals, int k)
67              throws ContradictionException {
68          ConstrGroup group = new ConstrGroup(false);
69          final int n = literals.size();
70  
71          if (n == 1) {
72              return group;
73          }
74  
75          int s[][] = new int[n - 1][k];
76          for (int j = 0; j < k; j++) {
77              for (int i = 0; i < n - 1; i++) {
78                  s[i][j] = solver.nextFreeVarId(true);
79              }
80          }
81          IVecInt clause = new VecInt();
82          clause.push(-literals.get(0));
83          clause.push(s[0][0]);
84          group.add(solver.addClause(clause));
85          clause.clear();
86          for (int j = 1; j < k; j++) {
87              clause.push(-s[0][j]);
88              group.add(solver.addClause(clause));
89              clause.clear();
90          }
91          clause.push(-literals.get(n - 1));
92          clause.push(-s[n - 2][k - 1]);
93          group.add(solver.addClause(clause));
94          clause.clear();
95          for (int i = 1; i < n - 1; i++) {
96              clause.push(-literals.get(i));
97              clause.push(s[i][0]);
98              group.add(solver.addClause(clause));
99              clause.clear();
100             clause.push(-s[i - 1][0]);
101             clause.push(s[i][0]);
102             group.add(solver.addClause(clause));
103             clause.clear();
104             for (int j = 1; j < k; j++) {
105                 clause.push(-literals.get(i));
106                 clause.push(-s[i - 1][j - 1]);
107                 clause.push(s[i][j]);
108                 group.add(solver.addClause(clause));
109                 clause.clear();
110                 clause.push(-s[i - 1][j]);
111                 clause.push(s[i][j]);
112                 group.add(solver.addClause(clause));
113                 clause.clear();
114             }
115             clause.push(-literals.get(i));
116             clause.push(-s[i - 1][k - 1]);
117             group.add(solver.addClause(clause));
118             clause.clear();
119         }
120         return group;
121     }
122 
123     @Override
124     public IConstr addAtMostOne(ISolver solver, IVecInt literals)
125             throws ContradictionException {
126         return addAtMost(solver, literals, 1);
127     }
128 
129     @Override
130     public IConstr addExactlyOne(ISolver solver, IVecInt literals)
131             throws ContradictionException {
132         ConstrGroup group = new ConstrGroup();
133 
134         group.add(addAtLeastOne(solver, literals));
135         group.add(addAtMostOne(solver, literals));
136 
137         return group;
138     }
139 
140     @Override
141     public IConstr addExactly(ISolver solver, IVecInt literals, int degree)
142             throws ContradictionException {
143         ConstrGroup group = new ConstrGroup();
144 
145         group.add(addAtLeast(solver, literals, degree));
146         group.add(addAtMost(solver, literals, degree));
147 
148         return group;
149     }
150 
151 }